Neural Network Performance for Complex Minimization Problem
نویسندگان
چکیده
منابع مشابه
Neural Network Performance for Complex Minimization Problem
We have analyzed the important problem of contemporary high-energy physics concerning the estimation of some parameters of the observed complex phenomenon. The standard statistical method of the data analysis and minimization was confronted with the Neural Network approaches. For the Natural Neural Networks we have used brains of high school students involved in our Roland Maze Project. The exc...
متن کاملNeural Network Classification Using Error Entropy Minimization
One way of using the entropy criteria in learning systems is to minimize the entropy of the error between two variables: typically, one is the output of the learning system and the other is the target. This framework has been used for regression. In this paper we show how to use the minimization of the entropy of the error for classification. The minimization of the entropy of the error implies...
متن کاملZhang Neural Network Versus Gradient Neural Network for Online Time-Varying Quadratic Function Minimization
With the proved efficacy on solving linear time-varying matrix or vector equations, Zhang neural network (ZNN) could be generalized and developed for the online minimization of time-varying quadratic functions. The minimum of a time-varying quadratic function can be reached exactly and rapidly by using Zhang neural network, as compared with conventional gradient-based neural networks (GNN). Com...
متن کاملThe Error Entropy Minimization Algorithm for Neural Network Classification
One way of using the entropy criteria in learning systems is to minimize the entropy of the error between two variables: typically, one is the output of the learning system and the other is the target. This framework has been used for regression. In this paper we show how to use the minimization of the entropy of the error for classification. The minimization of the entropy of the error implies...
متن کاملDirect Zero-Norm Minimization for Neural Network Pruning and Training
Designing a feed-forward neural network with optimal topology in terms of complexity (hidden layer nodes and connections between nodes) and training performance has been a matter of considerable concern since the very beginning of neural networks research. Typically, this issue is dealt with by pruning a fully interconnected network with “many” nodes in the hidden layers, eliminating “superfluo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications and Network
سال: 2010
ISSN: 1949-2421,1947-3826
DOI: 10.4236/cn.2010.21004